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Motivation

* Emerging Commercial Head-mounted Displays (HMDs)

e Panoramic video streaming provides an immersive experience for users as
if they are in a virtual 3D world

Virtual Reality Classroom

* Main challenges:

* Large network bandwidth requirement: 4~¥6x bandwidth consumption of a regular
video with the same resolution

* Seamless user experience: users would compete for limited bandwidth



Opportunity

* A user may only see as little as 20% of 360° scenes, known as Field of
View (FoV). It is sufficient to deliver 20% of 360° video scenes under
perfect motion prediction.
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Practical Challenges

* Imperfect prediction: should deliver a portion larger than the FoV

Predicted FoV

Actual FoV

With imperfect prediction, some of
the actual FoV will be missed if we
only send the predicted FoV



Practical Challenges

* Imperfect prediction: should deliver a portion larger than the FoV

Predicted FoV

Delivered portion

Actual FoV

The actual FoV can be completely
covered if we send a larger portion
based on the predicted FoV



Successful Viewing Probability

* Prediction errors of both pitch and yaw angles of

usern folloyy the n?/rmal distribution with standard
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First Goal: Maximizing Throughput

* Maximize the application-level throughput (defined as the weighted

sum of the expected successful viewing probability)
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e Constraints:
* Wireless interference constraints
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* The average allocated transmission rate should not be less than some

minimum rate [—1
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Second Goal: Providing Seamless Experience

* Seamless user experience, keep service regularity (defined as the variance
of the time between two consecutive successful views for each user)

* Time-Since-Last-Service (TSLS) counter: Tult

0, if]n(Sn[t]) =1;

T.[t] + 1, otherwise.

e [Li, Li, Eryilmaz 2014] showed that minimizing the
expected TSLS counter is equivalent to minimizing
the normalized variance of the time duration
between successful services
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Motivating Example

time
rate
user

Userl 1, 0, 0, 0,
User2 O, 1, 0, 0,
User 3 0, 0, 1, 0,
User4 O, 0, 0, 1,

(a) Service rate of each user in each time slot.

NaEIENENENE

User 1 1, 0, 0, 0,
User 2 0, 1, 0, 0,
User 3 0, 0, 1, 0,
User 4 0, 0, 0, 1,

(b) Successful content delivery rate of each user in each time slot.



Motivating Example

time
rate
user
User 1 1, 05 0, 0, 0,
User 2 o0 05 1, O 0 05 O,
User 3 o0 0 o 05 1, o0 0O, 05
User4g O, O O 05 O O 1, 0.5

(a) Service rate of each user in each time slot.
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User 1 Q 0, 0 0, 1 0, 0
User 2 0, 1, 0 0, 1 0, 0
User 3 0, 0 0 1 1 0 0 1

’ ?

User 4 0, 0 0, 1 0, 0 1, 1

(b) Successful content delivery rate of each user in each time slot.
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Motion Prediction

* Perform independently for each user in each axis since the correlation
between X,,[t] and Y, |t] is much smaller than their autocorrelations

* Autoregressive Model:

w
Z a[t—k] and Y 2

* [Fuller 2009] showed that the prediction error converges to the
Gaussian distribution as the number of data samples goes to infinity
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Scheduling Algorithm Design

* Avirtual queue for each user that measures the degree of violation of the
average service rate constraint

Qn[t + 1] é (Qn[t] + 7/'TL o Sn[t])+: Vn, Vt
* Non-standard Lyapunov function that combines the virtual queue and TSLS

counter N N
1
V[e] = 52@%&] 4 ern[t]

* Wireless SChEdu“ng: . _ Virtual Queue TSLS counter Successful Viewing Prob.
* Select the schedule $*[t] following: / / /

N
$°[t] € argmax )" (Sy[t]Qlt] + (T[] + Kwi) 3, (SuED)
sese) = /

where 171 and K are tunable parameters Weight of User n

* Computation complexity: like the Max-Weight algorithm
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Operation Example Wi

N or \
$°[t] € argmax )" (Sylt]Qnlt] + (T[] + K3, (SulED)
=1

ses(©)
d
_ _ Caah AP Schedule one user at each time slot
Q1] =05 T[1] =3,w; =03 \@ Available rate: S,,[t] = 0.5
User 1 Successful viewing prob.: §,,(S,[t]) = 1

Tunable parameters:n = 0.2, K =1

Wi[1] =05%05+(0.2x3+1%0.3)*1=1.15

—__\\_h\\\»-M@U]=05*05+(02*2+1*06)*1=125

W3[1]=0.5*0.5+(0.2*1+1*1)*1:
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Th eo rEtlcaI Bou nds Algo: S*[t] € argn(l?XZﬁ:l(Sn[t]Qn[t] + (T lt] + Kwy)6,(Splt]))
ses(c

* Our proposed algorithm asymptotically optimizes the application-level
throughput and provides seamless user experience guarantees while
meeting the minimum service rate requirement, i.e.,

B(n) + KNwmax
n

N
lim % Z E[w,6,(S,[tD] = U" — @ im % U,*{E[Tn[t]] <

2 2
where B(n) 2 ¥N_, T”ZRM + 1N, U™ is the optimal value of the optimization problem

« K A, application-level throughput /1, mean TSLS /1 (seamless user experience \)

* n A, application-level throughput N, mean TSLS N (seamless user experience 1)
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Simulation

* 8 users

e Synthetic head motion data
generated from the dataset [Bao,
Wu, Zhang, Ramli, Liu, 2016]

* ON-OFF channel fading

e At most two users can be
scheduled

* Total available rate: 1
* Rate set: {0,0.3,0.4,0.5,0.7,1}

—mmm
Required rate 7;, 0.08 0.11 0.05
Weight w, 0.2 0.1 1.0 0.8

Fading prob. p, 0.8

—mmm

Required rater;, 0.18 0.06 0.16 0.05
Weight w,, 0.9 1.2 0.3 0.2
Fading prob. p,, 0.8 0.9 0.7 0.8

15



Simulation (Cont’)

Required rate:
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Conclusions

* The successful viewing probability as the function of the delivered
portion

* A motion-prediction-based scheduling algorithm by integrating it into
the stochastic network optimization framework

* The proposed algorithm can provide desired application-level
throughput and service regularity guarantees

* Simulation results with real datasets demonstrated the efficiency of
our proposed algorithm



Thank youl!



